LogoLogo

Badene, Sonia. Supervision distante pour l'apprentissage de structures discursives dans les conversations multi-locuteurs

Badene, Sonia (2021). Supervision distante pour l'apprentissage de structures discursives dans les conversations multi-locuteurs.

[img]
Preview
PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
4Mb

Résumé en francais

L'objectif principal de cette thèse est d'améliorer l'inférence automatique pour la modélisation et la compréhension des communications humaines. En particulier, le but est de faciliter considérablement l'analyse du discours afin d'implémenter, au niveau industriel, des outils d'aide à l'exploration des conversations. Il s'agit notamment de la production de résumés automatiques, de recommandations, de la détection des actes de dialogue, de l'identification des décisions, de la planification et des relations sémantiques entre les actes de dialogue afin de comprendre les dialogues. Dans les conversations à plusieurs locuteurs, il est important de comprendre non seulement le sens de l'énoncé d'un locuteur et à qui il s'adresse, mais aussi les relations sémantiques qui le lient aux autres énoncés de la conversation et qui donnent lieu à différents fils de discussion. Une réponse doit être reconnue comme une réponse à une question particulière ; un argument, comme un argument pour ou contre une proposition en cours de discussion ; un désaccord, comme l'expression d'un point de vue contrasté par rapport à une autre idée déjà exprimée. Malheureusement, les données de discours annotées à la main et de qualités sont coûteuses et prennent du temps, et nous sommes loin d'en avoir assez pour entraîner des modèles d'apprentissage automatique traditionnels, et encore moins des modèles d'apprentissage profond. Il est donc nécessaire de trouver un moyen plus efficace d'annoter en structures discursives de grands corpus de conversations multi-locuteurs, tels que les transcriptions de réunions ou les chats. Un autre problème est qu'aucune quantité de données ne sera suffisante pour permettre aux modèles d'apprentissage automatique d'apprendre les caractéristiques sémantiques des relations discursives sans l'aide d'un expert ; les données sont tout simplement trop rares. Les relations de longue distance, dans lesquelles un énoncé est sémantiquement connecté non pas à l'énoncé qui le précède immédiatement, mais à un autre énoncé plus antérieur/tôt dans la conversation, sont particulièrement difficiles et rares, bien que souvent centrales pour la compréhension. Notre objectif dans cette thèse a donc été non seulement de concevoir un modèle qui prédit la structure du discours pour une conversation multipartite sans nécessiter de grandes quantités de données annotées manuellement, mais aussi de développer une approche qui soit transparente et explicable afin qu'elle puisse être modifiée et améliorée par des experts.

Sous la direction du :
Directeur de thèse
Asher, Nicholas
Ecole doctorale:Mathématiques, informatique, télécommunications de Toulouse (MITT)
laboratoire/Unité de recherche :Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
Mots-clés libres :Structure discursive - Relations discursives - Attachements - Supervision distante - Programmation par les données - Linguistique computationnelle
Sujets :Informatique
Déposé le :16 Feb 2022 13:25