LogoLogo

Saldi, Giuseppe. Les cinétiques de dissolution et précipitation de la magnésite aux conditions hydrothermales

Saldi, Giuseppe (2009). Les cinétiques de dissolution et précipitation de la magnésite aux conditions hydrothermales.

[img]PDF - nécessite un logiciel de visualisation PDF comme GSview, Xpdf or Adobe Acrobat Reader
6Mb

Résumé en francais

La magnésite (MgCO3) est la forme anhydre la plus stable d'une série de carbonates de magnésium qui présentent différents degrés d'hydratation. Malgré sa rareté dans les environnements naturels, elle constitue une phase minérale fondamentale pour le piégeage minéral permanent du CO2. La détermination expérimentale des vitesses de précipitation et de dissolution de la magnésite dans des conditions représentatives de la séquestration géologique est donc fondamentale pour l'estimation du potentiel de séquestration de CO2 par cette phase dans les basaltes et dans les roches ultrabasiques et pour l'optimisation des procédés de stockage du CO2. Nous avons mesuré les vitesses de précipitation de la magnésite en utilisant des réacteurs à circulation et des réacteurs fermés, en fonction de la température (100 = T = 200 °C), de la composition de la solution aqueuse et de la pression partielle de CO2 (de 0 à 30 bar). Les vitesses mésurées sont indépendantes de la force ionique de la solution pour 0.1 M < I < 1.1 M, mais elles diminuent significativement avec l'augmentation de l'activité des ions CO32- pour des pH supérieures à 8. Les vitesses mesurées dans les réacteurs à circulation sont cohérentes avec le modèle de coordination chimique surfacique de Pokrovsky et al. (1999) selon lequel les vitesses de précipitation de la magnésite sont proportionnelles à la concentration des sites surfaciques >MgOH2+. L'étude des vitesses de cristallisation conduite par microscopie à force atomique hydrothermale (HAFM) a montré un bon accord entre les vitesses déduites de mesures microscopiques et les vitesses macroscopiques et a aussi démontré que la précipitation de la magnésite s'effectue selon un mécanisme de croissance spirale. Suivant les observations effectuées par AFM, ce mécanisme contrôle la vitesse de croissance de la magnésite dans un grand intervalle de température et d'indice de saturation (15= O = 200 pour 80 = T < 120 °C). En raison de l'inhibition de la précipitation de la magnésite par les ions carbonates, il est recommandé d'opérer sous des pressions partielles de CO2 assez élevées, ce qui présente en outre l'avantage d'accélérer la cinétique de dissolution des silicates magnésiens, grâce à l'acidification de la solution par le CO2. La détermination des vitesses de dissolution de la magnésite dans des réacteurs à circulation à 150 et 200 °C et en milieu neutre à alcalin nous a permis d'améliorer le modèle de complexation de surface et d'étendre son application aux températures considérées. La diminution des vitesses de dissolution observée de 150 à 200 °C peut être expliquée par l'augmentation, en fonction de la température, de la carbonatation et de l'hydrolyse des sites >MgOH2+ qui contrôlent la vitesse de dissolution de la magnésite. Des températures supérieures à 100 °C qui entrainent une diminution de la vitesse de dissolution de la magnésite et des autres carbonates sont donc favorables au stockage de CO2 sous forme dissoute dans les aquifères profonds riches en minéraux carbonatés. L'utilisation d'une cellule à électrodes d'hydrogène (HECC) nous a permis de préciser les données cinétiques à proximité de l'équilibre grâce à la détermination précise du produit de solubilité de la magnésite en fonction de la température (50-200 °C). De plus, ces mesures nous ont permis de générer les propriétés thermodynamiques de la magnésite et de les comparer à celles obtenues par mesures calorimétriques et par équilibres de phases. Les résultats de cette étude représentent une importante contribution à la compréhension des cinétiques de réaction des minéraux carbonatés dans les systèmes hydrothermaux et permettent de proposer une base de données essentielle pour la quantification des réactions de dissolution/précipitation des carbonates dans les systèmes complexes. En outre, ce travail fournit des contraintes cinétiques pour la modélisation géochimique des processus de séquestration du CO2 et sera utile à l'évaluation de l'impact et des risques liés au stockage de CO2 à long terme.

Sous la direction du :
Directeur de thèse
Oelkers, Eric H.
Ecole doctorale:Sciences de l'Univers, de l'environnement et de l'espace (SDU2E)
laboratoire/Unité de recherche :Laboratoire des Mécanismes et Transferts en Géologie (LMTG), UMR 5563
Mots-clés libres :Carbonate minérals - Magnésite dissolution and précipitation - CO2 séquestration - Solubility product - Hydrothermal conditions
Sujets :Sciences de la terre
Déposé le :10 Dec 2009 12:05